- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)
- LECLAIRE, A. & BOREL, M. M. (1980). Acta Cryst. B36, 3090-3093.
- LEDÉSERT, M. (1982). Acta Cryst. B38, 1569-1571.
- LEDÉSERT, M. & MONIER, J. C. (1983). Z. Kristallogr. 165, 199–208.
- LELIGNY, H. & MONIER, J. C. (1982). Acta Cryst. B38, 355-358.

Acta Cryst. (1985). C41, 1157-1159

- MEULENAER, J. DE & TOMPA, H. (1965). Acta Cryst. 19, 1014–1018.
- MOSHINSKII, A. S. & TIKHOMIROVA, K. A. (1975). Russ. J. Inorg. Chem. 20, 2504–2509.
- PADMANABHAN, V. M., BUSING, W. R. & LEVY, H. A. (1978). Acta Cryst. B34, 2290–2292.
- SWARYCZEWSKI, A. & STĘPIEŃ, A. (1971). Soc. Sci. Lodz. Acta Chim. 16, 7–11.

Structure de la Forme de Haute Température du Polyphosphate de Lithium et de Potassium: LiK(PO₃)₂

PAR N. EL-HORR* ET M. BAGIEU

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 9 juillet 1984, accepté le 30 avril 1985)

monoclinic, C2/c, $M_r = 204 \cdot 0$, Abstract. a = $13.753(5), b = 13.818(5), c = 11.865(5) \text{ Å}, \beta =$ $V = 2254 \cdot 8 \text{ Å}^3$, $90.34(5)^{\circ}$, Z = 16, $D_r =$ 2.405 g cm⁻³, Ag $K\bar{\alpha}$, $\lambda = 0.5608$ Å, $\mu = 7.46$ cm⁻¹, F(000) = 1600, T = 298 K, R = 0.023 for 2170 independent reflections. The $(PO_3)_{\infty}$ chains run along the a direction with a period of eight tetrahedra. KO_{R} polyhedra alternate with KO_6 polyhedra in such a way that they form, together with LiO₄ tetrahedra, double chains running through the planes ab. These layers are joined by other LiO_4 tetrahedra along c.

Introduction. Dans le cadre d'une étude des phosphates mixtes de cations monovalents de formule $\text{Li}M^{1}(\text{PO}_{3})_{2}$ $(M^{1} = \text{K}, \text{Rb}, \text{Cs}, \text{Tl})$ deux formes de polyphosphates LiK (PO₃)₂ ont été isolées. Leurs préparations chimiques ainsi que leurs principales caractéristiques cristallographiques ont déjà été publiées (El-Horr, Cavero-Ghersi & Bagieu-Beucher, 1983). La structure cristalline de la forme de basse température dite β -LiK (PO₃)₂ a déjà aussi été décrite (El-Horr, Bagieu & Tordjman, 1983).

L'étude structurale de la forme de haute température dite α fait l'objet du présent article. Elle confirme que cette variété est également un polyphosphate à longues chaînes.

Partie expérimentale. Technique de Weissenberg, les conditions d'existence des réflexions hkl (h + k = 2n), 0k0 (k = 2n) et h0l (l = 2n) conduisent aux groupes d'espaces Cc ou C2/c. Intensités ont été mesurées dans conditions expérimentales suivantes: dimensions du cristal: $0,24 \times 0,18 \times 0,10$ mm; appareillage: diffrac-

0108-2701/85/081157-03\$01.50

tomètre Philips PW 1100; monochromateur: lame de graphite; domaine des mesures: 3 à 25° (θ); mode de balayage: Ω ; domaine de balayage: 1,2° (θ); vitesse de balavage: 0.02° s⁻¹; réflexions de référence: 408 et $\overline{408}$; temps total de mesure du fond continu: 20 s; 3360 réflexions $(-20 \le h \le 20, 0 \le k \le 20, 0 \le l \le 17)$ mesurées; correction de Lorentz-polarisation sur les 3147 réflexions indépendantes, aucune correction d'absorption; 2205 réflexions telles que $I > 9\sigma(I)$ conservées pour la détermination structurale; paramètres de maille affinés à partir d'une vingtaine de données; méthodes directes (Germain, Main & Woolfson, 1970); tests statistiques sont en faveur du groupe d'espace centrosymétrique C2/c; atomes de potassium, phosphore et oxygène ont été localisés à partir de synthèses de Fourier alternées avec plusieurs cycles d'affinement basé sur F utilisant facteurs thermiques isotropes; atomes de lithium ont été localisés à partir de synthèses de Fourier 'différence'; nouvelle série d'affinements a été entreprise avec l'anisotropie de l'agitation thermique; après élimination de 35 réflexions mal mesurées pour lesquelles $|F_o - F_c| > 70$ dans une échelle de 0 à 3603, R = 0.023 pour les 2170 réflexions conservées. $\Delta \rho(\text{max.}) < 1.5 \text{ e} \text{ Å}^{-3}, \ \Delta / \sigma(\text{max.}) \ 0.00.$ Pour tous les calculs, les programmes SDP (Enraf-Nonius, 1979) ont été utilisés, schéma de pondération unitaire, wR = 0.028, S = 2.207; facteur de diffusion des atomes neutres (International Tables for X-rav Crvstallography, 1974).†

© 1985 International Union of Crystallography

^{*} CNRS, BP 11-8281 Beyrouth, Liban.

[†] Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 42199: 18 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Tableau 1. Coordonnées atomiques et B_{éa}

$\boldsymbol{B}_{\acute{\mathbf{fq}}} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$						
	x	у	Ζ	$B_{\rm ég}({\rm \dot{A}}^2)$		
K(1)	0,12760 (4)	0,12565 (6)	0,46997 (5)	1,83 (2)		
K(2)	0,15452 (4)	0,37588 (5)	0,04395 (5)	1,62 (2)		
P(1)	$\frac{1}{2}$	0,97937 (7)	14	0,78 (2)		
P(2)	0,42080 (4)	0,13089 (5)	0,40081 (5)	0,74 (1)		
P(3)	0,29169 (4)	0,23948 (5)	0,25151 (5)	0,76 (1)		
P(4)	0,15071 (4)	0,09642 (5)	0,16347 (5)	0,78(1)		
P(5)	$\frac{1}{2}$	0,46530 (6)	14	0,77 (2)		
O(L12)	0,4968 (1)	0,0508 (1)	0,3575 (1)	1,06 (4)		
O(L23)	0,3809 (1)	0,1698 (1)	0,2818 (2)	1,23 (5)		
O(L34)	0,2000 (1)	0,1681 (1)	0,2540 (2)	1,38 (5)		
O(L45)	0,0908 (1)	0,0377 (1)	0,2577 (1)	1,21 (5)		
O(E11)	0,0935 (1)	0,4266 (1)	0,2587 (2)	1,39 (5)		
O(E21)	0,3410 (1)	0,0838 (1)	0,4643 (2)	1,35 (5)		
O(E22)	0,9796 (1)	0,2937 (1)	0,9583 (2)	1,34 (5)		
O(E31)	0,3083 (1)	0,2727 (1)	0,1335 (2)	1,33 (5)		
O(E32)	0,2754 (1)	0,3092 (1)	0,3440 (2)	1,47 (5).		
O(E41)	0,2247 (1)	0,0335 (1)	0,1112 (2)	1,63 (5)		
O(E42)	0,0843 (2)	0,1514 (2)	0,0888 (2)	1,79 (5)		
O(E51)	0,4988 (1)	0,4137 (2)	0,3591 (2)	1,68 (5)		
Li(1)	0,1918 (3)	0,4199 (4)	0,3718 (4)	1,29 (11)		
Li(2)	0,4309 (3)	0,3138 (3)	0,0678 (4)	1,16 (11)		

Discussion. Les coordonnées atomiques finales et les facteurs d'agitation thermique équivalents $(B_{\acute{eq}})$ sont rassemblées dans le Tableau 1.

L'anion polyphosphate. La maille pseudoorthorhombique est traversée par quatre chaînes $(PO_3)_{\infty}$ qui se développent parallèlement à la direction **a** (Fig. 1). Chaque chaîne possède: une période de huit tétraèdres dont quatre sont indépendants, un axe de symétrie d'ordre 2 en x = 0, $z = \frac{1}{4}$ et deux phosphores P(1) et P(5) situés en positions spéciales sur cet axe (Fig. 2).

Les principales caractéristiques de ces chaînes sont données dans le Tableau 2. Les valeurs des distances P-O, des angles O-P-O et P-O-P sont en accord avec celles observées dans les autres polyphosphates à longues chaînes que ceux-ci soient mixtes (Averbuch-Pouchot & Durif, 1983; Rzaigui, Ariguib, Averbuch-Pouchot & Durif, 1983) ou non (Averbuch-Pouchot, Durif & Tordjman, 1977; Averbuch-Pouchot, Durif & Bagieu-Beucher, 1983).

Environnement du lithium. Les deux sites de Li ont un voisinage tétraédrique déformé auquel seuls participent des atomes d'oxygène extérieurs aux chaînes $(PO_3)_{\infty}$ (Tableau 3). Comme pour la structure de β -LiK $(PO_3)_2$ (El-Horr *et al.*, 1983), les tétraèdres LiO₄ sont tous isolés les uns des autres par l'intermédiaire des tétraèdres PO₄ et des polyèdres de coordination du potassium. Les plus petites distances Li-P, Li-K et Li-Li ont respectivement pour valeurs 3,086 (3), 3,066 (3), 4,712 (6) Å.

Environnement du potassium. Dans cette structure, les deux sites de potassium possèdent des environnements très différents (Tableau 3): K(1) est entouré de huit atomes d'oxygène dont six sont extérieurs aux chaînes $(PO_3)_{\infty}$, K(2) est entouré seulement de six atomes d'oxygène extérieurs aux chaînes $(PO_3)_{\infty}$. La valeur limite des distances K—O a été fixée à 3,066 Å, la plus petite distance observée entre un potassium et un autre cation Li ou P.

Enchaînement des tétraèdres LiO_4 et des polyèdres KO_8 et KO_6 . La Fig. 3 représente une partie de l'arrangement des cations associés K et Li.

Les polyèdres KO_8 alternent avec les polyèdres KO_6 en mettant en commun un sommet ou une arête. Ils forment ainsi des chaînes reliées deux à deux par des arêtes communes au niveau des polyèdres KO_6 . Cette liaison correspond à la plus petite distance K-K qui est de 4,486 Å. Elle est renforcée par la présence des tétraèdres Li(2)O₄ qui partagent chacun deux arêtes et

Fig. 1. Projection de la structure sur le plan ab. Mise en évidence des quatre chaînes $(PO_3)_{\infty}$ dans la maille.

Fig. 2. Projection d'une moitié de la structure su le plan *ac*. L'autre moitié se déduit par symétrie autour de l'axe 2₁.

Tableau 2. Principales	distances interatomiques (Å) e	?t
angles de liaison	(°) dans la chaîne $(PO_3)_{\infty}$	

' désigne la position équivalente par l'axe 2.							
P(1)	O(E11)	O(L12)	O(L12')	O(E11')			
O(E11)	1,481 (1)	105,9(1)	109.2 (1)	121.0 (1)			
O(L12)	2,471 (2)	1.613(1)	104.6 (1)	109.2 (1)			
O(L12')	2,524 (2)	2,553 (2)	1.613(1)	105.9 (1)			
O(E11')	2,579 (3)	2,524 (2)	2,471 (2)	1,481 (1)			
P(2)	O(E21)	O(L12)	O(L23)	O(E22)			
O(E21)	1,485 (1)	110,1 (1)	110,1 (1)	118,5 (1)			
O(L12)	2,538 (2)	1,609 (1)	99,7 (1)	106.0 (1)			
O(L23)	2,533 (2)	2,457 (2)	1,605 (1)	110,6 (1)			
O(E22)	2,551 (2)	2,471 (2)	2,540 (2)	1,483 (1)			
P(3)	O(E31)	O(L23)	O(L34)	O(E32)			
O(E31)	1,492 (1)	105,9 (1)	109,4 (1)	121,4 (1)			
O(L23)	2,468 (2)	1,599 (1)	103,2 (1)	110,2 (1)			
O(L34)	2,525 (2)	2,508 (2)	1,601 (1)	105,4 (1)			
O(E32)	2,590 (2)	2,525 (2)	2,450 (2)	1,478 (1)			
P(4)	O(E41)	O(L34)	O(L45)	O(E42)			
O(E41)	1,478 (1)	110,7 (1)	110,6 (1)	118,4 (1)			
O(L34)	2,540 (2)	1,608 (1)	93,6 (1)	109,9 (1)			
O(L45)	2,540 (2)	2,345 (2)	1,611 (1)	111,0 (1)			
O(E42)	2,539 (2)	2,529 (2)	2,547 (2)	1,479 (1)			
P(5)	O(E51)	O(L45)	O(L45')	O(E51')			
O(E51)	1,478 (1)	105,3 (1)	109,8 (1)	122,3 (1)			
O(L45)	2,450 (2)	1,603 (1)	102,7 (1)	109,8 (1)			
O(L45')	2,521 (2)	2,504 (3)	1,603 (1)	105,3 (1)			
O(E51')	2,588 (3)	2,521 (2)	2,450 (2)	1,478 (1)			
P(1)-P(2)	2,966 (1)	P(1)-0	D(L12) - P(2)	133,9 (1)			
P(2)-P(3)	2,916 (1)	P(2)-0	D(L23) - P(3)	131,1 (1)			
P(3)-P(4)	2,955 (1)	P(3)-0	D(L34) - P(4)	134,1 (1)			
P(4) - P(5)	2,943 (1)	P(4)-0	D(L45) - P(5)	132,6 (1)			

Tableau 3. Principales distances interatomiques (Å), dans les environnements cationiques

" désigne la position équivalente par le centre de symétrie en $\frac{1}{4},\frac{1}{4},0$.

Environnement du potassium					
K(1)–O(E21)	2,992 (1)	K(2) - O(E11)	2,777 (1)		
K(1)–O(E22)	2,883 (1)	K(2) - O(E21)	2,875 (1)		
K(1)–O(E32)	2,725 (1)	K(2)-O(E22)	2,842 (1)		
K(1)–O(E41)	3,066 (2)	K(2) - O(E31)	2,759 (1)		
K(1)–O(E42)	3,013 (2)	K(2)–O(E31'')	2,987 (1)		
K(1) - O(E51)	2,734 (1)	K(2)O(E41)	2,784 (1)		
K(1) - O(L34)	2,817 (1)				
K(1)–O(L45)	2,839 (1)				
K(1)–K(1'')	4,860 (1)	K(1) - P(2)	3,758 (1)		
K(2)-K(2'')	4,486 (1)	K(1) - P(3)	3,789 (1)		
K(1) - K(2)	4,574 (1)	K(1) - P(4)	3,675 (1)		
		K(1) - P(5)	3,840 (1)		
K(2) - P(1)	3,550 (0)				
K(2) - P(2)	3,628 (1)				
K(2) - P(3)	3,622 (1)				
K(2)-P(4)	3,668 (1)				
Environnement of	du lithium				
Li(1) - O(E11)	1,901 (3)	Li(2) - O(E22)	1,955 (3)		
Li(1) - O(E21)	1,999 (3)	Li(2) - O(E31)	1,947 (3)		
Li(1) - O(E32)	1,944 (4)	Li(2) - O(E42)	1,929 (3)		
Li(1)-O(E41)	1,955 (4)	Li(2) - O(E51)	1,892 (3)		
Li(1)–Li(1'')	5,814 (7)	Li(1) - K(1)	3,168 (3)		
Li(2)-Li(2')	4,712 (6)	Li(1)-K(2)	3,522 (3)		
Li(1)-Li(2)	5,111 (4)	Li(2)-K(1)	3,066 (3)		
		Li(2)-K(2)	3,161 (3)		
Li(1)-P(1)	3,110 (3)	Li(2)-P(2)	3,267 (3)		
Li(1)-P(2)	3,196 (3)	Li(2)-P(3)	3,086 (3)		
Li(1)-P(3)	3,188 (3)	Li(2)-P(4)	3,208 (3)		
Li(1)-P(4)	3,291 (3)	Li(2)-P(5)	3,152 (3)		

Fig. 3. Projection de la structure sur le plan *ab*. Mise en évidence d'une partie de l'enchaînement des polyèdres cationiques.

un sommet communs avec trois polyèdres de potassium. Les doubles chaînes de polyèdres se développent selon des directions parallèles à la diagonale $\mathbf{a} + \mathbf{b}$ en z = 0 et $\mathbf{a} - \mathbf{b}$ en $z = \frac{1}{2}$ et forment ainsi des couches perpendiculaires à l'axe c. Les tétraèdres Li(1)O₄ assurent la liaison entre ces différentes couches par l'intermédiaire d'une face, d'une arête et d'un sommet en commun avec trois polyèdres de potassium.

Ce type d'enchaînement donne une cohésion tridimensionnelle à l'ensemble des anions polyphosphates.

En conclusion, les structures cristallines des deux formes de $\text{LiK}(\text{PO}_3)_2$ se distinguent l'une de l'autre aussi bien par la géométrie des chaînes $(\text{PO}_3)_{\infty}$ que par celle de l'arrangement des cations associés.

Références

- AVERBUCH-POUCHOT, M. T. & DURIF, A. (1983). J. Solid State Chem. 49, 341-352.
- AVERBUCH-POUCHOT, M. T., DURIF, A. & BAGIEU-BEUCHER, M. (1983). Acta Cryst. C 39, 25–26.
- Averbuch-Pouchot, M. T., Durif, A. & Tordjman, I. (1977). Acta Cryst. B33, 3462-3464.
- EL-HORR, N., BAGIEU, M. & TORDJMAN, I. (1983). Acta Cryst. C39, 1597-1599.
- EL-HORR, N., CAVERO-GHERSI, C. & BAGIEU-BEUCHER, M. (1983). C. R. Acad. Sci. 297, 479–482.
- Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)
- RZAIGUI, M., ARIGUIB, K., AVERBUCH-POUCHOT, M. T. & DURIF, A. (1983). J. Solid State Chem. 50, 240-246.